Publications
Nonlinear rheology of entangled polymer solutions in narrow gaps probed by confocal microscopy
Two likely causes of Type C Damping in highly entangled polymers are interfacial slip and shear banding. To isolate these mechanisms, we use confocal microscopy and particle image velocimetry to visualize flow in a planar-Couette shear. Polybutadiene (Mw=200K, 1.1 M) solutions with different entanglement densities (8≤Z≤56) are sheared in narrow gaps ∼35μm. Not only does the velocity at the boundaries violate the no-slip condition, but the velocity profiles are linear. This is inconsistent with shear banding. The measured shear rates and stresses are used to characterize interfacial slip.
A biophysicist marvels at the idea of grabbing microscopic particles with light by tweaking its phase.
Cryocrystallography in capillaries: Critical glycerol concentrations and cooling rates
Capillary tubes have many advantages over multi-well plates for macromolecular crystal growth and handling, including the possibility of in situ structure determination. To obtain complete high-resolution X-ray data sets, cryopreservation protocols must be developed to prevent crystalline ice formation and preserve macromolecular crystal order. The minimum glycerol concentrations required to vitrify aqueous solutions during plunging into liquid nitrogen and liquid propane have been determined for capillary diameters from 3.3 mm to 150 μm.
How Cooper pairs vanish approaching the Mott insulator in Bi 2Sr2CaCu2O8+δ
The antiferromagnetic ground state of copper oxide Mott insulators is achieved by localizing an electron at each copper atom in real space (r-space). Removing a small fraction of these electrons (hole doping) transforms this system into a superconducting fluid of delocalized Cooper pairs in momentum space (k-space). During this transformation, two distinctive classes of electronic excitations appear.
Mapping the depth dependence of shear properties in articular cartilage
Determining the depth dependence of the shear properties of articular cartilage is essential for understanding the structure-function relation in this tissue. Here, we measured spatial variations in the shear modulus G of bovine articular cartilage using a novel technique that combines shear testing, confocal imaging and force measurement.
Restricted dislocation motion in crystals of colloidal dimer particles
At high area fractions, monolayers of colloidal dimer particles form a degenerate crystal (DC) structure in which the particle lobes occupy triangular lattice sites while the particles are oriented randomly along any of the three lattice directions. We report that dislocation glide in DCs is blocked by certain particle orientations. The mean number of lattice constants between such obstacles is Z̄exp=4.6±0.2 in experimentally observed DC grains and Z̄sim=6.18±0.01 in simulated monocrystalline DCs.
Sloppiness, robustness, and evolvability in systems biology
The functioning of many biochemical networks is often robust - remarkably stable under changes in external conditions and internal reaction parameters. Much recent work on robustness and evolvability has focused on the structure of neutral spaces, in which system behavior remains invariant to mutations. Recently we have shown that the collective behavior of multiparameter models is most often sloppy: insensitive to changes except along a few 'stiff' combinations of parameters, with an enormous sloppy neutral subspace.
Positive feedback of G1 cyclins ensures coherent cell cycle entry
In budding yeast, Saccharomyces cerevisiae, the Start checkpoint integrates multiple internal and external signals into an all-or-none decision to enter the cell cycle. Here we show that Start behaves like a switch due to systems-level feedback in the regulatory network. In contrast to current models proposing a linear cascade of Start activation, transcriptional positive feedback of the G1 cyclins Cln1 and Cln2 induces the near-simultaneous expression of the ∼200-gene G1/S regulon. Nuclear Cln2 drives coherent regulon expression, whereas cytoplasmic Cln2 drives efficient budding.
Size and frequency dependent gas damping of nanomechanical resonators
We examine size and frequency dependent gas damping of nanobeam resonators. We find an optimal beam width that maximizes the quality factor at atmospheric pressure, balancing the dissipation that scales with surface-to-volume ratio and dominates at small widths, against the interaction with the underlying substrate via the air that dominates the behavior of the wider devices. This latter interaction is found to affect the Knudsen number corresponding to a transition out of the molecular damping regime.
Quantum Monte Carlo algorithms for electronic structure at the petascale; The Endstation project
Over the past two decades, continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting of the properties of matter from fundamental principles. By solving the Schrödinger equation through a stochastic projection, it achieves the greatest accuracy and reliability of methods available for physical systems containing more than a few quantum particles. QMC enjoys scaling favorable to quantum chemical methods, with a computational effort which grows with the second or third power of system size.