Skip to main content

Publications

Encoding of temporal signals by the TGF-β Pathway and implications for embryonic patterning

Cornell Affiliated Author(s)
Author
B. Sorre
A. Warmflash
A.H. Brivanlou
E. Siggia
Abstract

Genetics and biochemistry have defined the components and wiring of the signaling pathways that pattern the embryo. Among them, the transforming growth factor β (TGF-β) pathway has the potential to behave as a morphogen: invitro experiments established that it can dictate cell fate in a concentration-dependent manner. How morphogens convey positional information in a developing embryo, when signal levels change with time, is less understood.

Journal
Developmental Cell
Date Published
Funding Source
PHY-0954398
R01 HD32105
R01GM101653
ALTF 1476-2010
Research Area

Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates

Cornell Affiliated Author(s)
Author
K. Fujita
M.H. Hamidian
S.D. Edkins
C.K. Kim
Y. Kohsaka
M. Azuma
M. Takano
H. Takagi
H. Eisaki
S.-I. Uchida
A. Allais
M.J. Lawler
Eun-Ah Kim
S. Sachdev
J.C. Davis
Abstract

The identity of the fundamental broken symmetry (if any) in the underdoped cuprates is unresolved. However, evidence has been accumulating that this state may be an unconventional density wave. Here we carry out site-specific measurements within each CuO2 unit cell, segregating the results into three separate electronic structure images containing only the Cu sites [Cu(r)] and only the x/y axis O sites [Ox (r) and Oy( r)]. Phase-resolved Fourier analysis reveals directly that the modulations in the Ox(r) and Oy(r) sublattice images consistently exhibit a relative phase of π.

Journal
Proceedings of the National Academy of Sciences of the United States of America
Date Published
Group (Lab)
J.C. Seamus Davis Group
Michael Lawler Group

Stability of a Floquet Bose-Einstein condensate in a one-dimensional optical lattice

Cornell Affiliated Author(s)
Author
S. Choudhury
E.J. Mueller
Abstract

Motivated by recent experimental observations [Parker, Hua, and Chin, Nat. Phys. 9, 769 (2013)1745-247310.1038/nphys2789], we analyze the stability of a Bose-Einstein condensate (BEC) in a one-dimensional lattice subjected to periodic shaking. In such a system there is no thermodynamic ground state, but there may be a long-lived steady state, described as an eigenstate of a "Floquet Hamiltonian." We calculate how scattering processes lead to a decay of the Floquet state.

Journal
Physical Review A - Atomic, Molecular, and Optical Physics
Date Published
Funding Source
63834-PH-MUR
PHY-1068165
1068165

Air damping of atomically thin MoS2 nanomechanical resonators

Cornell Affiliated Author(s)
Author
J. Lee
Z. Wang
K. He
J. Shan
P.X.-L. Feng
Abstract

We report on experimental measurement of air damping effects in high frequency nanomembrane resonators made of atomically thin molybdenum disulfide (MoS2) drumhead structures. Circular MoS2 nanomembranes with thickness of monolayer, few-layer, and multi-layer up to ∼70 nm (∼100 layers) exhibit intriguing pressure dependence of resonance characteristics. In completely covered drumheads, where there is no immediate equilibrium between the drum cavity and environment, resonance frequencies and quality (Q) factors strongly depend on environmental pressure due to bulging of the nanomembranes.

Journal
Applied Physics Letters
Date Published
Funding Source
ECCS-0335765
Group (Lab)
Jie Shan Group

Images of edge current in InAs/GaSb quantum wells

Cornell Affiliated Author(s)
Author
E.M. Spanton
K.C. Nowack
L. Du
G. Sullivan
R.-R. Du
K.A. Moler
Abstract

Quantum spin Hall devices with edges much longer than several microns do not display ballistic transport; that is, their measured conductances are much less than e2/h per edge. We imaged edge currents in InAs/GaSb quantum wells with long edges and determined an effective edge resistance. Surprisingly, although the effective edge resistance is much greater than h/e2, it is independent of temperature up to 30 K within experimental resolution. Known candidate scattering mechanisms do not explain our observation of an effective edge resistance that is large yet temperature independent.

Journal
Physical Review Letters
Date Published
Group (Lab)
Katja Nowack Group

Tightly bound excitons in monolayer WSe2

Cornell Affiliated Author(s)
Author
K. He
N. Kumar
L. Zhao
Z. Wang
K.F. Mak
H. Zhao
J. Shan
Abstract

Exciton binding energy and excited states in monolayers of tungsten diselenide (WSe2) are investigated using the combined linear absorption and two-photon photoluminescence excitation spectroscopy. The exciton binding energy is determined to be 0.37 eV, which is about an order of magnitude larger than that in III-V semiconductor quantum wells and renders the exciton excited states observable even at room temperature. The exciton excitation spectrum with both experimentally determined one- and two-photon active states is distinct from the simple two-dimensional (2D) hydrogenic model.

Journal
Physical Review Letters
Date Published
Funding Source
DMR-0349201
DMR-0954486
0349201
0907477
0954486
Group (Lab)
Jie Shan Group
Kin Fai Mak Group

Interplay between DNA supercoiling and transcription elongation

Cornell Affiliated Author(s)
Author
J. Ma
M.D. Wang
Abstract

Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation. © 2014 Landes Bioscience.

Journal
Transcription
Date Published
Research Area
Group (Lab)
Michelle Wang Group