Skip to main content

Publications

Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

Cornell Affiliated Author(s)
Author
N.Y.C. Lin
S. Goyal
X. Cheng
R.N. Zia
F.A. Escobedo
Itai Cohen
Abstract

Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states.

Journal
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Date Published
Funding Source
1232666
Group (Lab)
Itai Cohen Group

Fast deterministic switching in orthogonal spin torque devices via the control of the relative spin polarizations

Cornell Affiliated Author(s)
Author
Junbo Park
D. Ralph
Robert Buhrman
Abstract

We model 100 ps pulse switching dynamics of orthogonal spin transfer (OST) devices that employ an out-of-plane polarizer and an in-plane polarizer. Simulation results indicate that increasing the spin polarization ratio, C P = PIPP/POPP, results in deterministic switching of the free layer without over-rotation (360° rotation). By using spin torque asymmetry to realize an enhanced effective PIPP, we experimentally demonstrate this behavior in OST devices in parallel to anti-parallel switching.

Journal
AIP Publishing
Date Published
Funding Source
ECS-0335765
DMR-1120296

Surface-induced order parameter distortion in superfluid He3-B measured by nonlinear NMR

Cornell Affiliated Author(s)
Author
L.V. Levitin
R.G. Bennett
E.V. Surovtsev
J.M. Parpia
B. Cowan
A.J. Casey
J. Saunders
Abstract

The B phase of superfluid He3 is a three-dimensional time-reversal invariant topological superfluid, predicted to support gapless Majorana surface states. We confine superfluid He3 into a thin nanofluidic slab geometry. In the presence of a weak symmetry-breaking magnetic field, we have observed two possible states of the confined He3-B phase manifold, through the small tipping angle NMR response. Large tipping angle nonlinear NMR has allowed the identification of the order parameter of these states and enabled a measurement of the surface-induced gap distortion.

Journal
Physical Review Letters
Date Published
Funding Source
1202991
228464
EP/E054129/1
EP/J022004/1
Group (Lab)
Jeevak Parpia Group

Classification of topological defects in Abelian topological states

Cornell Affiliated Author(s)
Author
Maissam Barkeshli
C.-M. Jian
X.-L. Qi
Abstract

We propose the most general classification of pointlike and linelike extrinsic topological defects in (2+1)-dimensional Abelian topological states. We first map generic extrinsic defects to boundary defects, and then provide a classification of the latter. Based on this classification, the most generic point defects can be understood as domain walls between topologically distinct boundary regions. We show that topologically distinct boundaries can themselves be classified by certain maximal subgroups of mutually bosonic quasiparticles, called Lagrangian subgroups.

Journal
Physical Review B - Condensed Matter and Materials Physics
Date Published
Group (Lab)
Chao-Ming Jian Group

Theory of defects in Abelian topological states

Cornell Affiliated Author(s)
Author
Maissam Barkeshli
Chao-Ming Jian
Xiao-Liang Qi
Abstract

The structure of extrinsic defects in topologically ordered states of matter is host to a rich set of universal physics. Extrinsic defects in 2+1-dimensional topological states include linelike defects, such as boundaries between topologically distinct states, and pointlike defects, such as junctions between different line defects. Gapped boundaries in particular can themselves be topologically distinct, and the junctions between them can localize topologically protected zero modes, giving rise to topological ground-state degeneracies and projective non-Abelian statistics.

Journal
Physical Review B - Condensed Matter and Materials Physics
Date Published
Group (Lab)
Chao-Ming Jian Group

Application of X-ray fluorescence imaging to ceramics from the American Southwest

Cornell Affiliated Author(s)
Author
E.C. Geil
S.A. LeBlanc
D.S. Dale
R.E. Thorne
Abstract

We have used synchrotron-based X-ray fluorescence imaging (XRFI) to examine sherds of painted ceramics from prehistoric cultures of the American Southwest. These sherds are very well suited to XRFI analysis. Paints can generally be detected and distinguished by the fluorescence intensities of their constituent elements. Spatial maps of element distributions yield the spatial distribution of pigments.

Journal
Journal of Archaeological Science
Date Published
Group (Lab)
Robert Thorne Group

Locally enhanced conductivity due to the tetragonal domain structure in LaAlO3/SrTiO3 heterointerfaces

Cornell Affiliated Author(s)
Author
B. Kalisky
E.M. Spanton
H. Noad
J.R. Kirtley
K.C. Nowack
C. Bell
H.K. Sato
M. Hosoda
Y. Xie
Y. Hikita
C. Woltmann
G. Pfanzelt
R. Jany
C. Richter
H.Y. Hwang
J. Mannhart
K.A. Moler
Abstract

The ability to control materials properties through interface engineering is demonstrated by the appearance of conductivity at the interface of certain insulators, most famously the 001 interface of the band insulators LaAlO 3 and TiO 2 -terminated SrTiO 3 (STO; refs,). Transport and other measurements in this system show a plethora of diverse physical phenomena. To better understand the interface conductivity, we used scanning superconducting quantum interference device microscopy to image the magnetic field locally generated by current in an interface.

Journal
Nature Materials
Date Published
Funding Source
TRR80
0957616
FAQSSO-10-1-0524
333799
DE-AC02-76SF00515
Group (Lab)
Katja Nowack Group

Vortex ring dynamics in trapped Bose-Einstein condensates

Cornell Affiliated Author(s)
Author
M.D. Reichl
E.J. Mueller
Abstract

We use the time-dependent Gross-Pitaevskii equation to study the motion of a vortex ring produced by phase imprinting on an elongated cloud of cold atoms. Our approach models the experiments of Yefsah on 6Li in the Bose-Einstein- condensate regime where the fermions are tightly bound into bosonic dimers. We find ring oscillation periods which are much larger than the period of the axial harmonic trap. Our results lend further strength to Bulgac 's arguments (arXiv:1306.4266) that the "heavy solitons" seen in those experiments are actually vortex rings.

Journal
Physical Review A - Atomic, Molecular, and Optical Physics
Date Published
Funding Source
1068165
1144153

Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers

Cornell Affiliated Author(s)
Author
H.J. Park
N.D. Loh
R.G. Sierra
C.Y. Hampton
D. Starodub
A.V. Martin
A. Barty
A. Aquila
J. Schulz
J. Steinbrener
R.L. Shoeman
L. Lomb
S. Kassemeyer
C. Bostedt
J. Bozek
S.W. Epp
B. Erk
R. Hartmann
D. Rolles
A. Rudenko
B. Rudek
L. Foucar
N. Kimmel
G. Weidenspointner
G. Hauser
P. Holl
E. Pedersoli
M. Liang
M.S. Hunter
L. Gumprecht
N. Coppola
C. Wunderer
H. Graafsma
F.R.N.C. Maia
T. Ekeberg
M. Hantke
H. Fleckenstein
H. Hirsemann
K. Nass
H.J. Tobias
G.R. Farquar
W.H. Benner
S.P. Hau-Riege
C. Reich
A. Hartmann
H. Soltau
S. Marchesini
S. Bajt
M. Barthelmess
L. Strueder
J. Ullrich
P. Bucksbaum
M. Frank
I. Schlichting
H.N. Chapman
M.J. Bogan
V. Elser
Abstract

Single shot diffraction imaging experiments via X-ray freeelectron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion.

Journal
Optics Express
Date Published
Group (Lab)
Veit Elser Group

Stacking order dependent second harmonic generation and topological defects in h-BN bilayers

Cornell Affiliated Author(s)
Author
C.-J. Kim
L. Brown
M.W. Graham
R. Hovden
R.W. Havener
P.L. McEuen
D.A. Muller
J. Park
Abstract

The ability to control the stacking structure in layered materials could provide an exciting approach to tuning their optical and electronic properties. Because of the lower symmetry of each constituent monolayer, hexagonal boron nitride (h-BN) allows more structural variations in multiple layers than graphene; however, the structure-property relationships in this system remain largely unexplored.

Journal
Nano Letters
Date Published
Group (Lab)
Paul McEuen Group