Publications
Spectral and spatial isolation of single tungsten diselenide quantum emitters using hexagonal boron nitride wrinkles
Monolayer WSe2 hosts bright single-photon emitters. Because of its compliance, monolayer WSe2 conforms to patterned substrates without breaking, thus creating the potential for large local strain, which is one activation mechanism of its intrinsic quantum emitters. Here, we report an approach to creating spatially isolated quantum emitters from WSe2 monolayers that display clean spectra with little detrimental background signal.
Strain relaxation induced transverse resistivity anomalies in SrRu O3 thin films
Here, we report a magnetotransport study of high-quality SrRuO3 thin films with high residual resistivity ratios grown by reactive oxide molecular-beam epitaxy. The transverse resistivity exhibits clear anomalies which are typically believed to be signatures of the topological Hall effect and the presence of magnetic skyrmions.
Gate-tunable spin waves in antiferromagnetic atomic bilayers
Remarkable properties of two-dimensional (2D) layer magnetic materials, which include spin filtering in magnetic tunnel junctions and the gate control of magnetic states, were demonstrated recently1–12. Whereas these studies focused on static properties, dynamic magnetic properties, such as excitation and control of spin waves, remain elusive. Here we investigate spin-wave dynamics in antiferromagnetic CrI3 bilayers using an ultrafast optical pump/magneto-optical Kerr probe technique.
Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices
The Hubbard model, formulated by physicist John Hubbard in the 1960s1, is a simple theoretical model of interacting quantum particles in a lattice. The model is thought to capture the essential physics of high-temperature superconductors, magnetic insulators and other complex quantum many-body ground states2,3. Although the Hubbard model provides a greatly simplified representation of most real materials, it is nevertheless difficult to solve accurately except in the one-dimensional case2,3.
Magneto-Memristive Switching in a 2D Layer Antiferromagnet
Memristive devices whose resistance can be hysteretically switched by electric field or current are intensely pursued both for fundamental interest as well as potential applications in neuromorphic computing and phase-change memory. When the underlying material exhibits additional charge or spin order, the resistive states can be directly coupled, further allowing electrical control of the collective phases. The observation of abrupt, memristive switching of tunneling current in nanoscale junctions of ultrathin CrI3, a natural layer antiferromagnet, is reported here.
Pressure-controlled interlayer magnetism in atomically thin CrI3
Stacking order can influence the physical properties of two-dimensional van der Waals materials1,2. Here we applied hydrostatic pressure up to 2 GPa to modify the stacking order in the van der Waals magnetic insulator CrI3. We observed an irreversible interlayer antiferromagnetic-to-ferromagnetic transition in atomically thin CrI3 by magnetic circular dichroism and electron tunnelling measurements. The effect was accompanied by a monoclinic-to-rhombohedral stacking-order change characterized by polarized Raman spectroscopy.
Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β−MoTe2
Single-crystal materials with sufficiently low crystal symmetry and strong spin-orbit interactions can be used to generate novel forms of spin-orbit torques on adjacent ferromagnets, such as the out-of-plane antidamping torque previously observed in WTe2/ferromagnet heterostructures. Here, we present measurements of spin-orbit torques produced by the low-symmetry material β-MoTe2, which, unlike WTe2, retains bulk inversion symmetry.
Evidence of high-temperature exciton condensation in two-dimensional atomic double layers
A Bose–Einstein condensate is the ground state of a dilute gas of bosons, such as atoms cooled to temperatures close to absolute zero1. With much smaller mass, excitons (bound electron–hole pairs) are expected to condense at considerably higher temperatures2–7. Two-dimensional van der Waals semiconductors with very strong exciton binding are ideal systems for the study of high-temperature exciton condensation. Here we study electrically generated interlayer excitons in MoSe2–WSe2 atomic double layers with a density of up to 1012 excitons per square centimetre.
Long valley lifetime of dark excitons in single-layer WSe2
Single-layer transition metal dichalcogenides provide a promising material system to explore the electron’s valley degree of freedom as a quantum information carrier. The valley degree of freedom can be directly accessed by means of optical excitation. However, rapid valley relaxation of optically excited electron-hole pairs (excitons) through the exchange interaction has been a major roadblock. Theoretically such valley relaxation is suppressed in dark excitons, suggesting a potential route for long valley lifetimes.
Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides
We conduct a comprehensive study of three different magnetic semiconductors, CrI3, CrBr3, and CrCl3, by incorporating both few-layer and bilayer samples in van der Waals tunnel junctions. We find that the interlayer magnetic ordering, exchange gap, magnetic anisotropy, and magnon excitations evolve systematically with changing halogen atom. By fitting to a spin wave theory that accounts for nearest-neighbor exchange interactions, we are able to further determine a simple spin Hamiltonian describing all three systems.