Publications
Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking
The existence of electronic symmetry breaking in the underdoped cuprates and its disappearance with increased hole density p are now widely reported. However, the relation between this transition and the momentum-space (k →-space) electronic structure underpinning the superconductivity has not yet been established. Here, we visualize the Q→ = 0 (intra-unit-cell) and Q→ ≠0 (density-wave) broken-symmetry states, simultaneously with the coherent k→-space topology, for Bi2Sr2CaCu2O8+δ samples spanning the phase diagram 0.06 ≤ p ≤ 0.23.
Formation of heavy d-electron quasiparticles in Sr3Ru 2O7
The phase diagram of Sr3Ru2O7 shows hallmarks of strong electron correlations despite the modest Coulomb interaction in the Ru 4d shell. We use angle-resolved photoelectron spectroscopy measurements to provide microscopic insight into the formation of the strongly renormalized heavy d-electron liquid that controls the physics of Sr 3Ru2O7. Our data reveal itinerant Ru 4d-states confined over large parts of the Brillouin zone to an energy range of <6 meV, nearly three orders of magnitude lower than the bare band width.
Electronic liquid crystal physics of underdoped cuprates
Recent observations of broken symmetries have partly demystified the pseudogap phase. Here we review evidence for long-range intra-unit-cell (IUC) nematic order and its unexpectedly strong coupling to the phase of the fluctuating stripes in the pseudogap states of underdoped Bi 2Sr 2CaCu 2O 8+δ.
Spectroscopic Imaging STM Studies of Electronic Structure in Both the Superconducting and Pseudogap Phases of Underdoped Cuprates
A motivation for the development of atomically resolved spectroscopic imaging STM (SISTM) has been to study the broken symmetries in the electronic structure of cuprate high temperature superconductors. Both the d-wave superconducting (dSC) and the pseudogap (PG) phases of underdoped cuprates exhibit two distinct classes of electronic states when studied using SI-STM. The class consists of the dispersive Bogoliubov quasiparticles of a homogeneous d-wave superconductor.
Spectroscopic imaging STM studies of broken electronic symmetries in underdoped cuprates
We use spectroscopic imaging scanning tunneling microscopy (SI-STM) to visualize the spatial symmetries of the electronic states that occur at the pseudogap energy scale in underdoped cuprates. We find evidence for the local intra-unit-cell electronic nematicity - by which we mean the disordered breaking of C 4v symmetry within each CuO 2 unit cell [1]. We also find that the coexisting incommensurate (smectic) electronic modulations couple to the intra-unit-cell nematicity through their 2π topological defects [2]. © 2012 Elsevier B.V. All rights reserved.
Picometer registration of zinc impurity states in Bi 2Sr 2CaCu 2O 8+δ for phase determination in intra-unit-cell Fourier transform STM
Direct visualization of electronic-structure symmetry within each crystalline unit cell is a new technique for complex electronic matter research (Lawler et al 2010 Nature 466 347-51, Schmidt et al 2011 New J. Phys. 13 065014, Fujita K et al 2012 J. Phys. Soc. Japan 81 011005). By studying the Bragg peaks in Fourier transforms of electronic structure images and particularly by resolving both the real and imaginary components of the Bragg amplitudes, distinct types of intra-unit-cell symmetry breaking can be studied.
Spectroscopic imaging scanning tunneling microscopy studies of electronic structure in the superconducting and pseudogap phases of cuprate high-T c superconductors
One of the key motivations for the development of atomically resolved spectroscopic imaging scanning tunneling microscopy (SI-STM) has been to probe the electronic structure of cuprate high temperature superconductors. In both the d-wave superconducting (dSC) and the pseudogap (PG) phases of underdoped cuprates, two distinct classes of electronic states are observed using SI-STM. The first class consists of the dispersive Bogoliubov quasiparticles of a homogeneous d-wave superconductor.
Topological defects coupling smectic modulations to intra-unit-cell nematicity in cuprates
We study the coexisting smectic modulations and intra-unit-cell nematicity in the pseudogap states of underdoped Bi 2Sr 2CaCu 2O 8+δ. By visualizing their spatial components separately, we identified 2π topological defects throughout the phase-fluctuating smectic states. Imaging the locations of large numbers of these topological defects simultaneously with the fluctuations in the intra-unit-cell nematicity revealed strong empirical evidence for a coupling between them.
Electronic structure of the cuprate superconducting and pseudogap phases from spectroscopic imaging STM
We survey the use of spectroscopic imaging scanning tunneling microscopy (SI-STM) to probe the electronic structure of underdoped cuprates. Two distinct classes of electronic states are observed in both the d-wave superconducting (dSC) and the pseudogap (PG) phases. The first class consists of the dispersive Bogoliubov quasiparticle excitations of a homogeneous d-wave superconductor, existing below a lower energy scale E = Δ0.
Intra-unit-cell electronic nematicity of the high-T c copper-oxide pseudogap states
In the high-transition-temperature (high-Tc) superconductors the pseudogap phase becomes predominant when the density of doped holes is reduced. Within this phase it has been unclear which electronic symmetries (if any) are broken, what the identity of any associated order parameter might be, and which microscopic electronic degrees of freedom are active. Here we report the determination of a quantitative order parameter representing intra-unit-cell nematicity: the breaking of rotational symmetry by the electronic structure within each CuO2 unit cell.