Fractionalized pair density wave in the pseudogap phase of cuprate superconductors
Abstract
The mysterious pseudogap (PG) phase of cuprate superconductors has been the subject of intense investigation over the last 30 years, but without a clear agreement about its origin. Owing to a recent observation in Raman spectroscopy, of a precursor in the charge channel, on top of the well known fact of a precursor in the superconducting channel, we present here a novel idea: The PG is formed through a Higgs mechanism, where two kinds of preformed pairs, in the particle-particle and particle-hole channels, become entangled through a freezing of their global phase. Remarkably, this entanglement is equivalent to fractionalizing a Cooper pair density wave (PDW) into its elementary parts; the particle-hole pair, giving rise to both density modulations and current modulations, and the particle-particle counterpart, leading to the formation of Cooper pairs. From this perspective, the "fractionalized PDW" becomes the central object around the formation of the pseudogap. The "locking" of phases between the charge and superconducting modes gives a unique explanation for the unusual global phase coherence of short-range charge modulations, observed below Tc on phase sensitive scanning tunneling microscopy (STM). A simple microscopic model enables us to estimate the mean-field values of the precursor gaps in each channel and the PG energy scale, and to compare them to the values observed in Raman scattering spectroscopy. We also discuss the possibility of a multiplicity of orders in the PG phase and give an overview of the phase diagram. © 2019 American Physical Society.