Publications
Site-Controlled and Optically Accessible Single Spins in van der Waals Heterostructures
Single spin arrays can serve as a scalable qubit platform. Here, we report the observation of arrays of single spins which are optically accessible through strain-induced localized positive trions residing in WSe2/CrI3 heterostructures. © 2021 OSA.
Tunable Exciton-Optomechanical Coupling in Suspended Monolayer MoSe2
The strong excitonic effect in monolayer transition metal dichalcogenide (TMD) semiconductors has enabled many fascinating light-matter interaction phenomena. Examples include strongly coupled exciton-polaritons and nearly perfect atomic monolayer mirrors. The strong light-matter interaction also opens the door for dynamical control of mechanical motion through the exciton resonance of monolayer TMDs. Here, we report the observation of exciton-optomechanical coupling in a suspended monolayer MoSe2 mechanical resonator.
Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect
Moiré superlattices offer an unprecedented opportunity for tailoring interactions between quantum particles1–11 and their coupling to electromagnetic fields12–18. Strong superlattice potentials generate moiré minibands of excitons16–18—bound pairs of electrons and holes that reside either in a single layer (intralayer excitons) or in two separate layers (interlayer excitons). Twist-angle-controlled interlayer electronic hybridization can also mix these two types of exciton to combine their strengths13,19,20.
Exchange magnetostriction in two-dimensional antiferromagnets
Magnetostriction, coupling between the mechanical and magnetic degrees of freedom, finds a variety of applications in magnetic actuation, transduction and sensing1,2. The discovery of two-dimensional layered magnetic materials3–8 presents a new platform to explore the magnetostriction effects in ultrathin solids. Here we demonstrate an exchange-driven magnetostriction effect in mechanical resonators made of two-dimensional antiferromagnetic CrI3. The mechanical resonance frequency is found to depend on the magnetic state of the material.
Imaging and control of critical fluctuations in two-dimensional magnets
Strong magnetization fluctuations are expected near the thermodynamic critical point of a continuous magnetic phase transition. Such critical fluctuations are highly correlated and in principle can occur at any time and length scales1; they govern critical phenomena and potentially can drive new phases2,3. Although critical phenomena in magnetic materials have been studied using neutron scattering, magnetic a.c. susceptibility and other techniques4–6, direct real-time imaging of critical magnetization fluctuations remains elusive.
Correlated insulating states at fractional fillings of moiré superlattices
Quantum particles on a lattice with competing long-range interactions are ubiquitous in physics; transition metal oxides1,2, layered molecular crystals3 and trapped-ion arrays4 are a few examples. In the strongly interacting regime, these systems often show a rich variety of quantum many-body ground states that challenge theory2. The emergence of transition metal dichalcogenide moiré superlattices provides a highly controllable platform in which to study long-range electronic correlations5–12.
Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures
Isolated spins are the focus of intense scientific exploration due to their potential role as qubits for quantum information science. Optical access to single spins, demonstrated in III-V semiconducting quantum dots, has fueled research aimed at realizing quantum networks. More recently, quantum emitters in atomically thin materials such as tungsten diselenide have been demonstrated to host optically addressable single spins by means of electrostatic doping the localized excitons.
Manipulation of the van der Waals Magnet Cr2Ge2Te6 by Spin–Orbit Torques
We report measurements of current-induced thermoelectric and spin-orbit torque effects within devices in which multilayers of the semiconducting two-dimensional van der Waals magnet Cr2Ge2Te6 (CGT) are integrated with Pt and Ta metal overlayers. We show that the magnetic orientation of the CGT can be detected accurately either electrically (using an anomalous Hall effect) or optically (using magnetic circular dichroism) with good consistency.
Electrical switching of valley polarization in monolayer semiconductors
Achieving on-demand control of the valley degree of freedom is essential for valley-based information science and technology. Optical and magnetic control of the valley degree of freedom in monolayer transition-metal dichalcogenide (TMD) semiconductors has been studied extensively. However, electrical control of the valley polarization has remained a challenge. Here we demonstrate switching of the valley polarization in monolayer WSe2 by electrical gating. This is achieved by coupling a WSe2 monolayer to a two-dimensional (2D) layered magnetic insulator CrI3.
Probing magnetic exchange fields by quantum emitters in a gate-tunable WSe2/ferromagnet-coupled system
Solid-state quantum emitters can be used as nanoscale optical transducers in quantum metrology. Here, we present a technique to probe voltage controlled magnetic exchange fields with a quantum emitter embedded in a WSe2/ferromagnet heterostrucutre. © OSA 2020.