Skip to main content

Valley-Coherent Quantum Anomalous Hall State in AB-Stacked MoTe2/ W S e2 Bilayers

Cornell Affiliated Author(s)

Author

Z. Tao
B. Shen
S. Jiang
T. Li
L. Li
L. Ma
W. Zhao
J. Hu
K. Pistunova
K. Watanabe
T. Taniguchi
T.F. Heinz
K.F. Mak
J. Shan

Abstract

Moiré materials provide fertile ground for the correlated and topological quantum phenomena. Among them, the quantum anomalous Hall (QAH) effect, in which the Hall resistance is quantized even under zero magnetic field, is a direct manifestation of the intrinsic topological properties of a material and an appealing attribute for low-power electronics applications. The QAH effect has been observed in both graphene and transition metal dichalcogenide (TMD) moiré materials. It is thought to arise from the interaction-driven valley polarization of the narrow moiré bands. Here, we show that the newly discovered QAH state in AB-stacked MoTe2/WSe2 moiré bilayers is not valley polarized but valley coherent. The layer- and helicity-resolved optical spectroscopy measurement reveals that the QAH ground state possesses spontaneous spin (valley) polarization aligned (antialigned) in two TMD layers. In addition, saturation of the out-of-plane spin polarization in both layers occurs only under high magnetic fields, supporting a canted spin texture. Our results call for a new mechanism for the QAH effect and highlight the potential of TMD moiré materials with strong electronic correlations and spin-orbit interactions for exotic topological states. © 2024 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Date Published

Journal

Physical Review X

Volume

14

Issue

1

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182283595&doi=10.1103%2fPhysRevX.14.011004&partnerID=40&md5=ad362630c32278bcc3d6984bac7ca5e3

DOI

10.1103/PhysRevX.14.011004

Group (Lab)

Jie Shan Group
Kin Fai Mak Group

Funding Source

DMR-1807810
NNCI-2025233
FA9550-19-1-0390
GBMF11563
GBMF9462
DE-SC0019481
FWP-100459
JPMJCR15F3

Download citation