Skip to main content

Thermal transport of helium-3 in a strongly confining channel

Cornell Affiliated Author(s)

Author

D. Lotnyk
A. Eyal
N. Zhelev
T.S. Abhilash
E.N. Smith
M. Terilli
J. Wilson
E. Mueller
D. Einzel
J. Saunders
J.M. Parpia

Abstract

The investigation of transport properties in normal liquid helium-3 and its topological superfluid phases provides insights into related phenomena in electron fluids, topological materials, and putative topological superconductors. It relies on the measurement of mass, heat, and spin currents, due to system neutrality. Of particular interest is transport in strongly confining channels of height approaching the superfluid coherence length, to enhance the relative contribution of surface excitations, and suppress hydrodynamic counterflow. Here we report on the thermal conduction of helium-3 in a 1.1 μm high channel. In the normal state we observe a diffusive thermal conductivity that is approximately temperature independent, consistent with interference of bulk and boundary scattering. In the superfluid, the thermal conductivity is only weakly temperature dependent, requiring detailed theoretical analysis. An anomalous thermal response is detected in the superfluid which we propose arises from the emission of a flux of surface excitations from the channel. © 2020, The Author(s).

Date Published

Journal

Nature Communications

Volume

11

Issue

1

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091442102&doi=10.1038%2fs41467-020-18662-8&partnerID=40&md5=bdd7a046fdd19d474af322cd7ced3c07

DOI

10.1038/s41467-020-18662-8

Group (Lab)

Jeevak Parpia Group

Funding Source

2002692
DMR-1708341
NNCI-1542081
PHY-1806357
824109
DMR-1719875
EP/J022004/1

Download citation