Skip to main content

Quantum Monte Carlo study of one-dimensional trapped fermions with attractive contact interactions

Cornell Affiliated Author(s)

Author

M. Casula
D Ceperley
E.J. Mueller

Abstract

Using exact continuous quantum Monte Carlo techniques, we study the zero- and finite-temperature properties of a system of harmonically trapped one-dimensional spin- 1 2 fermions with short-range interactions. Motivated by experimental searches for modulated Fulde-Ferrel-Larkin-Ovchinikov states, we systematically examine the impact of a spin imbalance on the density profiles. We quantify the accuracy of the Thomas-Fermi approximation, finding that for sufficiently large particle numbers (N100) it quantitatively reproduces most features of the exact density profile. The Thomas-Fermi approximation fails to capture small Friedel-like spin and density oscillations and overestimates the size of the fully paired region in the outer shell of the trap. Based on our results, we suggest a range of experimentally tunable parameters to maximize the visibility of the double-shell structure of the system and the Fulde-Ferrel-Larkin-Ovchinikov state in the one-dimensional harmonic trap. Furthermore, we analyze the fingerprints of the attractive contact interactions in the features of the momentum and pair momentum distributions. © 2008 The American Physical Society.

Date Published

Journal

Physical Review A - Atomic, Molecular, and Optical Physics

Volume

78

Issue

3

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-51749117349&doi=10.1103%2fPhysRevA.78.033607&partnerID=40&md5=bc1873d4e24a0ca1c83be6e0dc7f3c20

DOI

10.1103/PhysRevA.78.033607

Funding Source

0404853

Download citation