Skip to main content

Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements

Cornell Affiliated Author(s)

Author

A. Barty
C. Caleman
A. Aquila
N. Timneanu
L. Lomb
T.A. White
J. Andreasson
D. Arnlund
S. Bajt
T.R.M. Barends
M. Barthelmess
M.J. Bogan
C. Bostedt
J.D. Bozek
R. Coffee
N. Coppola
J. Davidsson
D.P. DePonte
R.B. Doak
T. Ekeberg
V. Elser
S.W. Epp
B. Erk
H. Fleckenstein
L. Foucar
P. Fromme
H. Graafsma
L. Gumprecht
J. Hajdu
C.Y. Hampton
R. Hartmann
A. Hartmann
G. Hauser
H. Hirsemann
P. Holl
M.S. Hunter
L. Johansson
S. Kassemeyer
N. Kimmel
R.A. Kirian
M. Liang
F.R.N.C. Maia
E. Malmerberg
S. Marchesini
A.V. Martin
K. Nass
R. Neutze
C. Reich
D. Rolles
B. Rudek
A. Rudenko
H. Scott
I. Schlichting
J. Schulz
Marvin Seibert
R.L. Shoeman
R.G. Sierra
H. Soltau
J.C.H. Spence
F. Stellato
S. Stern
L. Strüder
J. Ullrich
X. Wang
G. Weidenspointner
U. Weierstall
C.B. Wunderer
H.N. Chapman

Abstract

X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology should enable structural determination from submicrometre protein crystals with atomic resolution.

Date Published

Journal

Nature Photonics

Volume

6

Issue

1

Number of Pages

35-40,

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84355163051&doi=10.1038%2fnphoton.2011.297&partnerID=40&md5=fdcb1a64aa012e81e24204129ffbc5d2

DOI

10.1038/nphoton.2011.297

Group (Lab)

Veit Elser Group

Funding Source

0417142
MCB-1021557
1R01GM095583-01
1U54GM094625-01
DE-AC52-07NA27344

Download citation