Skip to main content

Solving structure with sparse, randomly-oriented x-ray data

Cornell Affiliated Author(s)

Author

H.T. Philipp
K. Ayyer
M.W. Tate
V. Elser
Sol Gruner

Abstract

Single-particle imaging experiments of biomolecules at x-ray free-electron lasers (XFELs) require processing hundreds of thousands of images that contain very few x-rays. Each low-fluence image of the diffraction pattern is produced by a single, randomly oriented particle, such as a protein. We demonstrate the feasibility of recovering structural information at these extremes using low-fluence images of a randomly oriented 2D x-ray mask. Successful reconstruction is obtained with images averaging only 2.5 photons per frame, where it seems doubtful there could be information about the state of rotation, let alone the image contrast. This is accomplished with an expectation maximization algorithm that processes the low-fluence data in aggregate, and without any prior knowledge of the object or its orientation. The versatility of the method promises, more generally, to redefine what measurement scenarios can provide useful signal. © 2012 Optical Society of America.

Date Published

Journal

Optics Express

Volume

20

Issue

12

Number of Pages

13129-13137,

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863741531&doi=10.1364%2fOE.20.013129&partnerID=40&md5=8cbcfb39d70a13c19aa130e8f2016686

DOI

10.1364/OE.20.013129

Group (Lab)

Sol M. Gruner Group
Veit Elser Group

Download citation