Skip to main content

Ordered mesoporous titania from highly amphiphilic block copolymers: Tuned solution conditions enable highly ordered morphologies and ultra-large mesopores

Cornell Affiliated Author(s)

Author

M. Stefik
J. Song
H. Sai
S. Guldin
P. Boldrighini
M.C. Orilall
U. Steiner
Sol Gruner
U. Wiesner

Abstract

Crystalline transition metal oxides with controlled mesopore architectures are in increasing demand to enhance the performance of energy conversion and storage devices. Solution based block copolymer self-assembly routes to achieve ordered mesoporous and crystalline titania have been studied for more than a decade, but have so far mostly been limited to water and alcohol dispersible polymers. This constraint has limited the accessible morphology space as well as structural dimensions. Moreover, synthetic approaches are mostly performed in a trial-and-error fashion using chemical intuition rather than being based on well-defined design parameters. We present solubility design guidelines that facilitate coassembly with highly amphiphilic block copolymers, enabling the formation of ordered structures with diverse length scales (d10 = 13.8-63.0 nm) and bulk-type morphologies. Thus, highly ordered and crystalline titania with the largest reported pores (d = 32.3 nm) was demonstrated for such a coassembly approach without the use of pore-expanders. Furthermore, the use of an ABC triblock terpolymer system led to a 3D ordered network morphology. In all cases, subsequent calcination treatments, such as the CASH procedure, enabled the formation of highly crystalline mesoporous materials while preserving the mesostructure. © The Royal Society of Chemistry 2015.

Date Published

Journal

Journal of Materials Chemistry A

Volume

3

Issue

21

Number of Pages

11478-11492,

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930506160&doi=10.1039%2fc5ta02483h&partnerID=40&md5=fcc3d298350c26fe5e9d15affa89d987

DOI

10.1039/c5ta02483h

Group (Lab)

Sol M. Gruner Group

Funding Source

DMR-13322086
1120296
1332208
1409105

Download citation