Skip to main content

Glassy dislocation dynamics in 2D colloidal dimer crystals

Cornell Affiliated Author(s)

Author

S.J. Gerbode
U. Agarwal
D.C. Ong
C.M. Liddell
F. Escobedo
Itai Cohen

Abstract

Although glassy relaxation is typically associated with disorder, here we report on a new type of glassy dynamics relating to dislocations within 2D crystals of colloidal dimers. Previous studies have demonstrated that dislocation motion in dimer crystals is restricted by certain particle orientations. Here, we drag an optically trapped particle through such dimer crystals, creating dislocations. We find a two-stage relaxation response where initially dislocations glide until encountering particles that cage their motion. Subsequent relaxation occurs logarithmically slowly through a second process where dislocations hop between caged configurations. Finally, in simulations of sheared dimer crystals, the dislocation mean squared displacement displays a caging plateau typical of glassy dynamics. Together, these results reveal a novel glassy system within a colloidal crystal. © 2010 The American Physical Society.

Date Published

Journal

Physical Review Letters

Volume

105

Issue

7

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955570697&doi=10.1103%2fPhysRevLett.105.078301&partnerID=40&md5=14e97f84df35565d73bacf04f378d7c5

DOI

10.1103/PhysRevLett.105.078301

Group (Lab)

Itai Cohen Group

Download citation