Skip to main content

Effects of enzymatic treatments on the depth-dependent viscoelastic shear properties of articular cartilage

Cornell Affiliated Author(s)

Author

D.J. Griffin
J. Vicari
M.R. Buckley
J.L. Silverberg
Itai Cohen
L.J. Bonassar

Abstract

Osteoarthritis (OA) is a disease that involves the erosion and structural weakening of articular cartilage. OA is characterized by the degradation of collagen and proteoglycans in the extracellular matrix (ECM), particularly at the articular surface by proteinases including matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs).1 Degradation of collagen and proteoglycans is known to alter shear mechanical properties of cartilage, but study of this phenomenon has been focused on bulk tissue properties. The purpose of this study was to assess microscale cartilage damage induced by trypsin or collagenase using a technique to measure the local shear viscoelastic properties. Safranin-O histology revealed a decrease in proteoglycans near the articular surface after collagenase and trypsin digestions, with proteoglycan depletion increasing in time. Similarly, confocal reflectance micrographs showed increasing collagen degradation in collagenase treated samples, although the collagen network remained intact after trypsin treatment. Both treatments induced changes in shear modulus that were confined to a narrow range (∼400μm) near tissue surface. In addition, collagenase altered the total energy dissipation distribution by up to a factor of 100, with longer digestion times corresponding to higher energy dissipation. The ability to detect local mechanical signatures in tissue composition and mechanics is an important tool for understanding the spatially non-uniform changes that occur in articular cartilage diseases such as OA. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

Date Published

Journal

Journal of Orthopaedic Research

Volume

32

Issue

12

Number of Pages

1652-1657,

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84911808357&doi=10.1002%2fjor.22713&partnerID=40&md5=453d536a09ad390d508615658d63ff66

DOI

10.1002/jor.22713

Research Area

Group (Lab)

Itai Cohen Group

Funding Source

R21AR054867

Download citation