Skip to main content

Depth-dependent patterns in shear modulus of temporomandibular joint cartilage correspond to tissue structure and anatomic location

Cornell Affiliated Author(s)

Author

C.J. Gologorsky
J.M. Middendorf
Itai Cohen
L.J. Bonassar

Abstract

To fully understand TMJ cartilage degeneration and appropriate repair mechanisms, it is critical to understand the native structure-mechanics relationships of TMJ cartilage and any local variation that may occur in the tissue. Here, we used confocal elastography and digital image correlation to measure the depth-dependent shear properties as well as the structural properties of TMJ cartilage at different anatomic locations on the condyle to identify depth-dependent changes in shear mechanics and structure. We found that samples at every anatomic location showed qualitatively similar shear modulus profiles as a function of depth. In every sample, four distinct zones of mechanical behavior were observed, with shear modulus values spanning 3–5 orders of magnitude across zones. However, quantitative characteristics of shear modulus profiles varied by anatomic location, particularly zone size and location, with the most significant variation in zonal width occurring in the fibrocartilage surface layer (zone 1). This anatomic variation suggests that different locations on the TMJ condyle may play unique mechanical roles in TMJ function. Furthermore, zones identified in the mechanical data corresponded on a sample-by-sample basis to zones identified in the structural data, indicating the known structural zones of TMJ cartilage may also play unique mechanical roles in TMJ function. © 2021

Date Published

Journal

Journal of Biomechanics

Volume

129

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117713578&doi=10.1016%2fj.jbiomech.2021.110815&partnerID=40&md5=b4a949e83992dcdb26f4790997f7a21c

DOI

10.1016/j.jbiomech.2021.110815

Research Area

Group (Lab)

Itai Cohen Group

Funding Source

CMMI 1927197

Download citation