Skip to main content

Modulation Doping via a Two-Dimensional Atomic Crystalline Acceptor

Cornell Affiliated Author(s)

Author

Y. Wang
J. Balgley
E. Gerber
M. Gray
N. Kumar
X. Lu
J.-Q. Yan
A. Fereidouni
R. Basnet
S.J. Yun
D. Suri
H. Kitadai
T. Taniguchi
K. Watanabe
X. Ling
J. Moodera
Y.H. Lee
H.O.H. Churchill
J. Hu
L. Yang
Eun-Ah Kim
D.G. Mandrus
E.A. Henriksen
K.S. Burch

Abstract

Two-dimensional nanoelectronics, plasmonics, and emergent phases require clean and local charge control, calling for layered, crystalline acceptors or donors. Our Raman, photovoltage, and electrical conductance measurements combined with ab initio calculations establish the large work function and narrow bands of α-RuCl3 enable modulation doping of exfoliated single and bilayer graphene, chemical vapor deposition grown graphene and WSe2, and molecular beam epitaxy grown EuS. We further demonstrate proof of principle photovoltage devices, control via twist angle, and charge transfer through hexagonal boron nitride. Short-ranged lateral doping (≤65 nm) and high homogeneity are achieved in proximate materials with a single layer of α-RuCl3. This leads to the best-reported monolayer graphene mobilities (4900 cm2/(V s)) at these high hole densities (3 × 1013 cm-2) and yields larger charge transfer to bilayer graphene (6 × 1013 cm-2). © 2020 American Chemical Society.

Date Published

Journal

Nano Letters

Volume

20

Issue

12

Number of Pages

8446-8452,

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096550568&doi=10.1021%2facs.nanolett.0c03493&partnerID=40&md5=e0b40459fefddb7d98d8ab60533b4c59

DOI

10.1021/acs.nanolett.0c03493

Group (Lab)

Download citation