Skip to main content

Semiconductor-less vertical transistor with I ON/I OFF of 106

Cornell Affiliated Author(s)

Author

J.-H. Lee
D.H. Shin
H. Yang
N.B. Jeong
D.-H. Park
K. Watanabe
T. Taniguchi
Eun-Ah Kim
S.W. Lee
S.H. Jhang
B.H. Park
Y. Kuk
H.-J. Chung

Abstract

Semiconductors have long been perceived as a prerequisite for solid-state transistors. Although switching principles for nanometer-scale devices have emerged based on the deployment of two-dimensional (2D) van der Waals heterostructures, tunneling and ballistic currents through short channels are difficult to control, and semiconducting channel materials remain indispensable for practical switching. In this study, we report a semiconductor-less solid-state electronic device that exhibits an industry-applicable switching of the ballistic current. This device modulates the field emission barrier height across the graphene-hexagonal boron nitride interface with ION/IOFF of 106 obtained from the transfer curves and adjustable intrinsic gain up to 4, and exhibits unprecedented current stability in temperature range of 15–400 K. The vertical device operation can be optimized with the capacitive coupling in the device geometry. The semiconductor-less switching resolves the long-standing issue of temperature-dependent device performance, thereby extending the potential of 2D van der Waals devices to applications in extreme environments. © 2021, The Author(s).

Date Published

Journal

Nature Communications

Volume

12

Issue

1

URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100856747&doi=10.1038%2fs41467-021-21138-y&partnerID=40&md5=163823aab7103abc19cd292dd5be534e

DOI

10.1038/s41467-021-21138-y

Group (Lab)

Download citation